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This article details the mathematical notation and typesetting conventions used

throughout my dissertation and related publications. Note that many variable scalars

and functions including x, y, g, etc. are repeatedly redefined and reused to avoid

introducing an excess of symbols. Unless explicitly stated, none of these variable

definitions will hold in subsequent sections.

For consistency, various symbols will be reserved for a single purpose throughout

this work. Table 1 lists select symbols; more detail on each can be found throughout

this document.

1 Set and Function Conventions

Sets are typically typeset with a calligraphic font (e.g., X ), with the exception of some

common number sets which are typeset using blackboard bold (e.g., real numbers R).

Function spaces, such as the set of functions X 7→ Y, are compactly represented as

YX .

Various mappings are defined for which the domain and/or the range [5] are

function spaces. For a mapping g : Z 7→ YX , the argument notation g(z) ∈ YX

denotes a function, while g(x; z) ∈ Y is a specific value of that function. Semicolons

are used to distinguish between the arguments referring to the domain and arguments

that access the resulting function. The mapping {1, . . . , N} 7→ Y is represented as

1
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Table 1: Select Reserved Symbols

× or
∏

i Si Cartesian product

⊗ or
⊗

i fi Outer product

diag Diagonal operator

dim Dimensionality operator

χ Indicator function

P(X ) Space of distributions over X

supp Support operator

δ[·, ·] Kronecker delta function

δ(·) Dirac delta function

ν Multinomial coefficient function

β Generalized beta function

Px Probability mass function of x

px Probability density function of x

Pr(·) Probability operator

⊥⊥ or ⊥⊥i xi Probabilistic independence

(x ⊥⊥ y) | z Conditional independence

p→ Convergence in probability

Ex Expectation w.r.t. x

Cx Covariance w.r.t. x

µx Expected value of x

Σx Covariance of x

YN for brevity. Items of an indexed tuple g ∈ YN are accessed with subscripts rather

than parentheses, such that gi ∈ Y .

The convention adopted for natural numbers is N = {1, 2, . . .}; the set of non-

negative integers is denoted Z≥0 = N ∪ {0}. The set of positive real numbers R+

excludes zero, while nonnegative real numbers are represented as R≥0 = R+ ∪ {0}.
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The cardinality of countably infinite sets, including the set of natural numbers, is

denoted ℵ0 = |N|, where ℵ is the aleph number [1]; the cardinality of uncountable

sets, such as R, is at least ℵ1.

2 Special Operators and Functions

The Cartesian product of sets is frequently used, such that for x ∈ X and y ∈ Y , the

pair (x, y) ∈ X ×Y . For a general product of sets Si, the notation
∏

i Si = S1 ×S2 . . .

is employed.

Various operators commonly used in linear algebra are generalized for functions.

Specifically, the outer product operator ⊗ is used on two real-valued functions f ∈ RX

and g ∈ RY such that
(
f ⊗ g

)
∈ RX×Y is defined as

(
f ⊗ g

)
(x, y) = f(x)g(y). A

general outer product of functions is denoted
⊗

i fi = f1 ⊗ f2 . . . for i = 1, . . ., where(⊗
i fi

)
(x1, x2, . . .) = f1(x1)fx(x2) . . ., is used as well. Also, the diagonal operator

operates on a single real-valued function such that diag(f) ∈ RX×X . For countable

sets X , the operator values are diag(f)(x, x′) = f(x)δ[x, x′]; for Euclidean sets, the

operator values are diag(f)(x, x′) = f(x)δ(x− x′).

Numerous set functions are used throughout. The dim operator returns the

dimensionality of a space (e.g., dim(R2) = 2). For a given subset S ⊂ X , the indicator

function χ(S) : X 7→ {0, 1} is defined as

χ(x;S) =


1 if x ∈ S ,

0 if x /∈ S .

(1)

Probability distribution functions are defined over numerous different domains.

As such, a set function P is defined such that P(X ) is the space of distributions over do-

main X . If X is countable, the space is defined as P(X ) =
{
p ∈ R≥0

X :
∑

x∈X p(x) = 1
}
;

if X is a Euclidean space, the space is P(X ) =
{
p ∈ R≥0

X :
∫
X p(x) dx = 1

}
. Prob-

ability functions will be frequently used with the support operator to represent the
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random values with nonzero probability; for a given function g ∈ RX , define

supp(f) = {x ∈ X : f(x) ̸= 0} , (2)

returning the subset of the function domain for which the mapped values are nonzero.

Both the Kronecker and Dirac delta functions are frequently required. As both

functions are denoted by the symbol δ, they are distinguished by the use of square

brackets or parentheses. The Kronecker delta function is defined as

δ[x, x′] =


1 if x = x′ ,

0 if x ̸= x′ .

(3)

The Dirac delta function [2] over a Euclidean domain X is represented as δ(·); it has

support only at the point x = 0 and satisfies
∫
X δ(x) dx = 1. Consequently, it also

satisfies
∫
X g(x)δ(x) dx = g(0).

The differential will be occasionally used as a linear operator returning the

integral of a function over an infinitesimally small interval, such that dx f(x) ≡

lim∆→0

∫ x+∆

x
f(x′) dx′. If f is bounded, the expression tends to zero. However, if f

is unbounded, the expression may be nonzero. Notably, the operator allows relation

of the Dirac and Kronecker delta functions. Employing the rectangular function

definition of the Dirac delta, δ(x) = lim∆→0∆
−1χ

(
x; [0,∆)

)
, it is clear that

dx δ(x− x0) = lim
∆→0

∫ x−x0+∆

x−x0

∆−1χ
(
x′; [0,∆)

)
dx′

= lim
∆→0

∆−1

∫ ∆

0

χ
(
x′; [−x+ x0,∆− x+ x0)

)
dx′

= lim
∆→0

∆−1∆δ[x, x0]

= δ[x, x0] . (4)

A valuable use case for this notation is when f is a probability density function –

if a random variable is distributed as x ∼ f , observe that dx f(x) ≡ Pr(x = x).

Specifically, if the PDF is a Dirac delta mixture f(x) =
∑

n cnδ(x − Xn), then

dx f(x) =
∑

n cnδ[x,Xn]; this demonstrates that Pr(x = x) > 0 only if the distribution

has a Dirac delta supported at x.
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The multinomial coefficient and multivariate beta function, which typically operate

on sequences, are defined more generally for function over countable domains. The

multinomial operator ν is used for functions g : X 7→ Z≥0 that map to nonnegative

integers from an arbitrary countable domain X . The output of the operator is

ν(g) =

(∑
x∈X g(x)

)
!∏

x∈X g(x)!
. (5)

Similarly, the beta function β operates on functions g : X 7→ R+ that map to positive

real numbers from an arbitrary countable domain X , such that

β(g) =

∏
x∈X Γ

(
g(x)

)
Γ
(∑

x∈X g(x)
) . (6)

3 Random elements, variables, and processes

Random elements are denoted with roman font (e.g., x), while specific values are

denoted with italics (e.g., x). Random elements that assume numerical scalars or

functions are referred to as random variables or processes, respectively.

Consider a random element x realizing values from a set X . If X is countable,

either finite with |X | ∈ N or countably infinite with |X | = ℵ0, then x is a discrete

random element and is characterized by a probability mass function (PMF) [4] denoted

Px ∈ P(X ). If X is a Euclidean space and is thus uncountable with |X | ≥ ℵ1, then

x is a continuous random variable or process characterized by a probability density

function (PDF) denoted px ∈ P(X ). Commonly, random variables are described using

notation x ∼ f , where f is a valid distribution function; this indicates that Px = f .

The probability operator Pr relates the probability of events to these distribution

functions, such that Pr(x ∈ S) =
∑

x∈S Px(x) for countable domains and Pr(x ∈ S) =∫
S px(x)dx for Euclidean domains. Note that when introducing random variables,

however, the shorthand notation x ∈ X will be used to indicate the set of values that

x can assume, such that realizations satisfy x ∈ X . Consequently, the domain of Px is

X and Pr(x ∈ X ) = 1.
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Next, consider x conditioned on another random element z ∈ Z. The conditional

distribution is represented as Px|z : Z 7→ P(X ) such that Px|z(z) is a PMF over X

and Px|z(x|z) is a specific value of that PMF. Commonly, the dependency on the

conditional variable z will typically not be expressed in terms of a specific value

z ∈ Z, but will be left in terms of the random element itself. In these cases, the more

compact notation Px|z is used to imply Px|z(z). This is especially useful when using

expectations. For example, the forms f(z) = Ex|z[g(x)] and Px = Ez[Px|z] exclude the

z function arguments without loss of clarity. Also, this convention enables conditional

distributions to be defined using notation such as x | z ∼ f(z), which infers Px|z = f(z).

The notion of probabilistic independence is used extensively. The independence of

two random variables x and y is notated as x ⊥⊥ y. Formally, this indicates that the

joint distribution can be factored as Px,y = Px⊗Py, such that Px,y(x, y) = Px(x)Py(y).

Similarly, conditional independence on another random variable z is denoted (x ⊥⊥ y) |

z, implying Px,y|z(z) = Px|z(z)⊗Py|z(z). To express the independence of a sequence of

variables (. . . , xi, . . .) from one another, the notation ⊥⊥i xi is used.

A frequent consideration will be how the statistics of a sequence of random elements

tend. The notion of convergence in probability [3] will be used throughout; the notation

xn
p→ y indicates that limn→∞ Pr

(
|xn − y |< ϵ

)
= 0 for all values ϵ > 0. In this

work, dependency on the index will typically be excluded. Also, the sequence will

often converge to a deterministic value; this implies convergence of the probability

distribution to a delta function (Kronecker or Dirac for discrete or continuous random

elements, respectively). For example, as N → ∞, the notation x
p→ y indicates that

px → δ(· − y).

Many distributions will be repeatedly used and thus special functions will be

defined for the PDFs and PMFs of interest. For example, consider a random process

x ∈ X characterized by an Empirical distribution with parameters N ∈ Z≥0 and

ρ ∈ P(X ); the PMF will be notated as Emp : Z≥0 × P(X ) 7→ P(X ), where the range

is the set of valid PMFs. Other distribution functions repeatedly used include Dir,
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DE, DP, and DEP, representing the Dirichlet distribution, the Dirichlet-Empirical

distribution, the Dirichlet process, and the Dirichlet-Empirical process, respectively.

3.1 Expectations

For a discrete random element x, the expectation operator Ex is defined as

Ex

[
g(x)

]
=

∑
x

Px(x)g(x) , (7)

where the argument g is an arbitrary scalar function of x with range R. Additionally,

define the variance operator Cx as

Cx

[
g(x)

]
= Ex

[(
g(x)− Ex

[
g(x)

])2
]
. (8)

When x is a random variable and the function g is the identity operator, such that

g(x) = x, the mean and variance are compactly represented as µx and Σx, respectively.

These operations can be performed with respect to a conditional distribution as

well. In this case, the expectation operator is a function of the observed value of z,

such that

Ex|z
[
g(x)

]
(z) =

∑
x

Px|z(x | z)g(x) . (9)

Similarly, the conditional variance is notated Cx|z
[
g(x)

]
(z). When g is the identity

operator, the conditional mean and variance as represented by µx|z(z) and Σx|z(z),

respectively.

As with conditional distributions, it is common that an explicit value z of the

conditional random element will not be used, but rather the expectation will be left

as a function of the random element z. In these cases, the argument is suppressed and

the notation Ex|z
[
g(x)

]
implies the dependency on z. This convention also holds for

the conditional variance operator Cx|z, as well as for the µx|z and Σx|z functions.

If the range of g is a Hilbert space, such that g(x) is itself a function with a domain

Y , then the notation for these operators is expanded. The output of the expectation
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operator is a function over Y represented by

Ex

[
g(x)

]
(y) =

∑
x

Px(x)g(y;x) . (10)

Similarly, the covariance function notation is modified and the output is a function

over Y × Y ,

Cx

[
g(x)

]
(y, y′) = Ex

[(
g(y; x)− Ex

[
g(y; x)

])(
g(y′; x)− Ex

[
g(y′; x)

])]
. (11)

Cx

[
g(x)

]
= Ex

[(
g(x)− Ex

[
g(x)

])
⊗

(
g(x)− Ex

[
g(x)

])]
. (12)

As before, the notation is simplified when the function g is the identity operator. If x

is a random process over a domain Y, then the mean and covariance functions are

defined over domains Y and Y × Y with values notated such as µx(y) and Σx(y, y
′).

If the expectations are evaluated with respect to a conditional distribution Px|z, the

additional argument for the observed random element is added and the notation for

the above operators is extended to Ex|z
[
g(x)

]
(y; z) and Cx|z

[
g(x)

]
(y, y′; z) for nonscalar

outputs. When g is the identity operator, the notation µx|z(y; z) and Σx|z(y, y
′; z)

is used. As for probability distributions, it is common for the conditional random

element z to be left as a random quantity instead of being explicitly defined; in these

cases, the dependency on z is implied.
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